Entanglement of a Pair of Quantum Bits
نویسندگان
چکیده
The “entanglement of formation” of a mixed state of a bipartite quantum system can be defined in terms of the number of pure singlets needed to create the state with no further transfer of quantum information. We find an exact formula for the entanglement of formation for all mixed states of two qubits having no more than two non-zero eigenvalues, and we report evidence suggesting that the formula is valid for all states of this system. PACS numbers: 03.65.Bz, 89.70.+c
منابع مشابه
اثر درهمتنیدگی و چهارچوب نالخت در بازی کوانتومی چهارکیوبیتی
The effect of increasing quantum bits and Unruh effect on quantum Prisoners’ dilemma has been investigated for both entangled and unentangled initial states. The Nash equilibrium, as an important result of quantum game theory, was obtained through the different payoffs resulted from choosing various strategies. It has been shown that the non-inertial frame disturbs the symmetry of the game. Act...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملCoherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کاملQuantum Hyperdense Coding for Distributed Communications
Superdense coding proved that entanglement-assisted quantum communications can improve the data transmission rates compared to classical systems. It allows sending 2 classical bits between the parties in exchange of 1 quantum bit and a pre-shared entangled Bell pair. This paper introduces a new protocol which is intended for distributed communication. Using a pre-shared entangled Bell pair and ...
متن کاملدرهمتنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهمکنش ژیالوسینکی - موریا
Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...
متن کاملMinimum cbits for remote preperation and measurement of a qubit
Quantum teleportation requires 2 cbits to be sent from Alice to Bob in order to transmit an unknown qubit provided they share an entangled EPR pair. Classical teleportation requires 2.19 cbits to be sent from Alice to Bob in order to simulate a known qubit provided they share local hidden variables. We show that there is a simple scheme which requires 1 cbit to be sent from Alice to Bob for sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997